据外媒报道,在日前举行的IEEE大会上,谷歌介绍了更多关于无人驾驶汽车的技术信息。谷歌高级研究员Anelia Angelova称,谷歌无人汽车未来将使用新型高速行人检测器。
谷歌无人驾驶车新进展(图片来自cnbeta)
报道称,如果自动汽车仅使用廉价的摄像机就能定位行人的话,这将大大降低成本,并且将有希望很快迎来一个机器自由操控汽车的时代。但摄像机有他们自己的问题。Angelova说到,“相较于雷达装置,视觉信息给你一个更广阔的视野,但处理速度却相对较慢。”
据需,最好的视频分析系统使用的是深层神经网络,这种机器学习算法可以被训练,从而能对图像信息(和其他类型的数据)进行十分准确的分类。现代深层网络可以在诸如人脸识别等任务方面胜人一筹,准确率超过99.5%。
Angelova表示,新型高速行人检测器分为三个单独的阶段:第一阶段是一种深层网络,相较于之前的成千上万的碎片而言,它只需将图像信息分割成几十块碎片,可在多个地点同时进行多项检测,从而对行人进行识别。
第二个阶段则是另一种网络,它能对识别结果进行改良;第三阶段则是一种传统的深层网络,它将最终识别结果,即是否发现行人,进行传送。
由于这种缓慢准确的网络只对潜在图像的一小部分进行分析,所以整个处理过程就会进行得更快,大约要比之前的网络快60到100倍。Angelova说道,这些图形处理器的运行和谷歌的无人驾驶汽车十分类似,会对大约一天以内的街道图像进行反馈。然后,它可以在大约0.25秒左右的时间准确地识别行人。
Angelova承认:“事实上,目前还达不到能用于实际的0.07秒。”为了能安全采取行动,无人驾驶汽车需要在瞬间确认是否面对行人。“但这意味着倘若其他感应器失灵,新系统能做出及时的补充处理。”
随着更强大的处理器的出现以及神经网络容量的增加,Angelova预计该功能的效果将会显著提升。她说:“从更加广阔的视角来看待网络,你将能感受到更加快速的发展。”等到大家都能拥有无人驾驶汽车时,其独特的旋转激光雷达可能已经完全消失了。